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In the present work, a recently proposed flux-splitting scheme suitable for com-
pressible flow is extended to incompressible flows. Appropriate dissipation terms for
both incompressible and compressible flows are determined by expanding the Roe
flux-difference splitting in terms of Mach number. Analysis of the dissipation terms
in this form for both the Roe scheme and the basic (current) scheme leads to the
incorporation of certain terms into the basic scheme to establish the transition from
compressible flow toward the incompressible limit. Using the proper terms in the dis-
sipation formulation, convergence rates for airfoil flows became nearly independent
of the freestream Mach number.g 2000 Academic Press
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terms for all speeds; Navier—Stokes.

1. INTRODUCTION

The requirements for discretization methods suitable for the simulation of technica
relevant flows cover a very broad spectrum, and are sometimes even contradicting
obtain accurate solutions, only a minimum amount of numerical viscosity can be tolerat
especially for the resolution of boundary layers in viscous flows. For flows with stror
shock waves, however, robustness becomes of primary importance, especially near vac
conditions where the prediction of negative values for positive quantities like pressure :
density is likely to occur. In such situations, the proper amount of numerical viscosity nee
to be supplied to achieve a converged solution. To establish adequate discretization sche
recent development has focused on construction of hybrid flux-splitting formulations, wh
the accuracy of flux-difference splitting [1] is combined with the robustness of flux-vect
splitting [2]. Prominent representatives of such schemes are the advection upstream
Mach number (AUSM) scheme [3], the low-diffusion flux-splitting scheme (LDFSS) [4]
and the convection upstream split pressure (CUSP) formulations [5, 6]. In a previous st
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[7], an alternative formulation based on the left and right Mach numbers was propos
Here, the computation of an intermediate state at a cell interface is almost comple
avoided. The derivation in [7] leads to a very simple discretization scheme, which desj
its simplicity rivals the common, most advanced high-resolution/high-accuracy schern
such as [3-5].

In addition to the derivation of numerical methods for computation of compressit
flows, over the past several years considerable effort has been spent on the extensi
schemes designed for compressible flow to solve for incompressible flow. The proble
of compressible codes handling incompressible flows are caused by the disparity of
eigenvalues of the compressible equations: at low speeds, the largest eigenvalue
toward the speed of sound, whereas the smallest eigenvalue approaches zero. Thu
ratio of largest to smallest eigenvalue, the condition number of the system of equatic
tends to infinity and the stiffness of the system of equations increases. To overcome
stiffness problem, the eigenvalues are altered toward a more favorable condition nun
and the system of equations is “preconditioned” for easier solution with iterative metho
e.g., [8-10].

In the present work, the requirements of both compressible and incompressible flows
the formulation of the discrete interface flux function are considered. The intention of t
work is to establish a discretization method suitable for the range from incompressible
hypersonic flows without overly compromising accuracy or robustness. As a basis, the fl
splitting scheme derived in [7] will be used. The scheme employs elements of the LDF
[4] and of the CUSP [5] formulations and uses the left and right Mach number at an interf:
to establish the flux function. The basic scheme is extended to incompressible flows
identify terms important in the incompressible limit, the Roe flux-difference splitting [1] i
expanded in functions of the Mach number. Analysis of the resulting expressions lead
the incorporation of certain terms establishing an appropriate discretization scheme at
speeds. The implications for the convergence characteristics of the extended schem
then assessed for viscous airfoil flows at incompressible and at transonic conditions.

2. GOVERNING EQUATIONS

We consider the two-dimensional Navier—Stokes equations for compressible flow.
system of partial differential equations in strong conservation form is given by

oW  9F 4G
—+—+ — =0, 1

ot Toax T ay @
whereW represents the vector of conservative variables. The flux-density vectors for th
andy directions F andG, may be split in convective and viscous parts according to

F=Fc—Fs G=Gc-G,. )

Setting the viscous parts of the flux-density tenggrandG,, to zero, the Euler equations
governing inviscid flow are obtained.

In the construction of hybrid flux-splitting upwind schemes, it was recognized that t
convective parts of the flux-density vectors may be further subdivided into contributic
related to advection and pressure [3, 5]:

Fec=Fad+ Fp; Ge=Gag+ Gp, (3)
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where the contributions due to pressure are defined as
0 0
p 0

Fo=| gl Go=|p| (4)
0 0

and the contributions related to advection are given by
Faa=Ug; Gag= v, (5)

with the vector of advected quantities defined by

0
o=|"01 (6)

pH

3. HYBRID FLUX-SPLITTING SCHEME FOR COMPRESSIBLE FLOW

Inthe following, a brief presentation of the hybrid flux-splitting scheme MAPS develope
in [7]and an overview of the basic solution method will be given. For the design principles
the MAPS (Mach number-based advection pressure splitting) scheme the reader is refe
to [7].

3.1. Basic Discretization Scheme

The flux-splitting scheme developed in [7] splits the convective flux-density tensor in
an advective contribution and into a contribution associated with pressure, Eq. (3). T
advective parE? at a cell interface is discretized by

PO = (0 + ) - 5 (0 + ) — 5@+ %) 2B e (MR signM®
, 1
— ML - sign(MbY)] — 5 max(IMY], [MR]) - (R — ¢Y), 7)

where L and R denote the states left and right of the cell interfpde the normal velocity
at the interfaceM denotes the Mach number of the interface normal velocity, evaluated |

On
andc® is the average speed of sound at the interface computed by
av 1 L R
=2+, 9)
The functiongM is given by
ﬂM — maX(O, 2. Mmaxl_ 1)
(10)

M™*L — minimax(|M"], [MR]), 1].
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The contribution of pressure at a cell interface is determined via

FP = %(pL +p5) - % - P - [p% - sign(MF) — p*- - sign(Mb)], (11)
where
0
p= 22?, ; n=[:ﬂ (12)
0

with n denoting the unit normal vector of the interface, and the blending fungtickefined
as

BP = max0,2- M™% _ 1)

M™NL = min[min(|M‘|, IMR)), 1]. Y

3.2. Basic Solution Algorithm

The basic solution scheme is a cell-centered, finite-volume scheme, where the time
tegration is performed using a 5-stage Runge—Kutta scheme. The MAPS scheme is in
mented in the pattern of a central discretization plus artificial dissipation, and the artific
dissipative terms are evaluated at every odd stage of the time-marching scheme. For se
order accuracy, the components of the advection veg#me reconstructed. To control the
reconstruction, the SLIP limiter of [5] is used following the implementation given in [6]. T
accelerate convergence toward the steady state, local time-stepping, implicit residual ¢
aging, and Multigrid are used. The influence of turbulence is modeled according to Bald
and Lomax [11]. The basic outline of the numerical framework may be found in [12].

If not otherwise indicated, in the following computations the numerical parameters ¢
fixed to

CFL=7.5

4-level W cycle

First-order MAPS scheme on coarse meshes

Modification of SLIP-limiter according to Swanse al. [6] by settingk® = 1/8.

4. FLUX-SPLITTING SCHEME FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOW

Preconditioning methods have been developed to solve incompressible flow probl
with numerical algorithms designed primarily for compressible flows. The difficulties el
countered with low-speed flows arise from the increase in the condition number of
system of equations, i.e., the increase in the stiffness of the governing equations. To ¢
come the stiffness problem, the time derivatives of the dependent variables are multip
by a suitable matrix in order to change the eigenvalues such that the condition numbe
more favorable. This may be expressed by

AW 9F 3G

Pl— +

—+—=AD 14
At 8x+8y ’ (14)

whereP~1 is the preconditioning matrix, and AD denotes the artificial dissipative tern
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necessary to stabilize the numerical scheme. Note thatin Eq. (14) the spatial derivatives
flux-density tensor are assumed to be approximated by central difference approximati
As outlined in [9, 10], for a Roe-type scheme the artificial dissipation should be based
the eigenvalues of the preconditioned Jacobians:

AW oF 8G] »
TP {a_era_y] = P[(IP71- AJAW), + (P71 BlAW),], (15)

whereA andB denote the Jacobians of tkeandy directions, and® 1A andP~B are the
corresponding preconditioned Jacobians. In the case of a CUSP scheme, for Mach nun
below 0.5 the artificial dissipation scales linearly with the normal interface velocity. Thu
in [6] the preconditioning was applied in the form

AW oF 090G
—— 4P| —+— — (P Hon|AW)s| = 0; 16
at P lax T oy (P~ lon|AW), ; (16)
i.e., the numerical dissipation need not be changed. Since the MAPS and the CUSP sct
yield similar expressions for Mach numbers below 0.5, this strategy was at first adopted
the computation of low-speed flows. In the present study, however, it was found adval
geous for MAPS to implement the numerical viscosity in the form
AW oF 090G
— +P|— 4+ —| = |h|AW; 17
AP la B = o a7)
i.e., only the centrally differenced fluxes are preconditioned and the artificial dissipatior
added after the preconditioning step. Note that this implementation leads to a noncon
vative formulation of the artificial dissipation.

In the present investigation, the preconditioning matrix given by Choi and Merkle [8]
used to remove the stiffness in the system of equations. In all preconditioners develope
far, a reference Mach numbbt, must be computed in order to avoid numerical difficulties
at stagnation points. In the present study the reference Mach nuhbgevaluated from

2 _ i 9® | 92
M2 = m|n{ma><?,k(:7>, 1], (18)

o0

whereq andc denote velocity and speed of sound, respectively. The corlsiantl8) is
set tok = 1, unless otherwise noted.

Figure 1 shows the convergence rates obtained for the computation of the viscous 1
around the RAE2822 airfoil for a freestream Mach numbeMgf = 0.001 andM,, =
0.73. A mesh with C-topology using 32064 cells was employed. In both cases the
preconditioning matrix of [8] was used with the implementation given by Eq. (17). The cc
responding slopes are indicated in the figure by=@2r As can be seen in Fig. 1, the
computation of the incompressible flow poses no severe problem, but the convergence
of the preconditioned code now deteriorates for compressible flow. This becomes clea
comparison with the unpreconditioned result, the convergence history denotee:Byipr
the figure.

Regarding the results in Fig. 1, it becomes obvious that certain elements in the b:
MAPS scheme are missing if one attempts to establish a convergence behavior inde
dent of compressible or incompressible conditions. When inspecting hybrid flux-splitti
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320x64 RAE 2822
Re=6,500,000
10° ¢ M_=0.73 - 0.001
|51 L
dt
107k
10°F
10°E
10% k M=0.73, pr=2
10% M=0.001, pr=2
M=0.73, pr=0
10'5l““ll.“l“‘vll“‘l".‘l“..l

0 100 200 300 400 500 600
cycles

FIG. 1. Basic MAPS scheme and preconditioning.

schemes like AUSM, LDFSS, CUSP, or MAPS, one notices that these schemes do not
vide any crossflow diffusion for grid-aligned flows, since for the aligned cell face the normr
component of velocity approaches zero. In principle, the schemes are designed that w.
accurately resolve shear layers. However, in the Roe flux-difference splitting (FDS), crc
flow diffusion is provided by acoustic and shear waves even for an interface normal velo
of zero. Therefore, in the following the Roe FDS scheme will be expanded in terms of Mé
number to identify relevant terms when the interface normal velocity approaches zero.

4.1. Expansion of Roe FDS in Terms of Mach Number and Augmented MAPS Formula

The basic Roe flux-differencing scheme is given by
Roe 1 L R 1
F :E(F +F )—§|A|AW, (19)

whereF- andFR are the left and right states of the inviscid, convective part of the fluy
density vectorA is the corresponding flux Jacobian, andlV denotes the differences in
conservative variables between the left and the right state of the interface. For the expan
the interface Mach numbé\, is defined as

Mo = min(|M|, 1) - sign(M); (20)

i.e., Mg denotes the unaltered interface Mach number, however bound&d Hysing this
definition, the expressioi| AW in Eq. (19), which represents the dissipative terms of th
FDS scheme, is expanded in terms factoredviyyand (1 — [Mg|). To derive the Mach
number expansion, the basic derivation of Roe and Pike [13] was used as a guideline.
resulting expressions are summarized in Eq. (21), Table I. W€ig AF,,, AF,,, AF,4
denote the expressions|afl AW for the continuity, the momentum, and the energy equatior
respectively. All intermediate variables on a cell interface must be evaluated using R
averaging [1], as itis standard practice for the matixin the classical FDS scheme. Note
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TABLE |
Eq. (21): Flux-Difference Dissipation Expanded in Mach Number

AF,= L1 Mobap TolMAG  HlaAp

AFu=NiMlAD  4IUA-IMODAD  4Np0— IMDAG  +ouIMoIAG -+l Apy

AR = IMoIAD  +iu(L- [MoDAD  n,0C(L [MoDAG,  pulMolAGy  HalAp

AFyu= THA- MDA bawcd - IMDAG  FoHIMGAG ol AoH
" gl — Mo AP

that the terms given in Eq. (21) must be multiplied by 0.5 to obtain the correct scaling for
dissipative terms of the FDS scheme; see Eq. (19). Proceeding from left to rightin Eq. (2
the following terms should be noted:

—In the momentum equations, the upwinding of pressure is achieved by linearly scal
the pressure differencesp by |Mg|.

—1In all equations pressure differences are added, scal%dlby [Mg|). Note that these
terms are switched off at supersonic flow.

—In the energy equation, an additional term with pressure differences occurs. This te
arises from the fact that differencéae H are used for the dissipative flux insteadX$ E.
Note that this term vanishesdfl| = 1 andM = 0.

—With the exception of the continuity equation, in all other equations differences in ti
normal velocityAg, scaled bypc(1 — |Mp|) appear. These terms vanish for supersonic
flow, and in the energy equation the term also vanishedffes O.

—In all equations differences in normal velocityg, occur, scaled linearly byMo|.
These terms provide the upwinding of the normal interface velocity.

—In all equations, differences in the advected quantitie@sare scaled linearly by the
normal velocity at an interface.

To identify terms in the Roe scheme that contribute to crossflow diffusion, let the inte
face normal velocityy, and, correspondinglyy approach zero. The remaining terms are
summarized in Eq. (22), Table Il.

It is instructive to compare the corresponding formulations of the MAPS scheme w
the expressions in Eq. (21), Table I. The formulations for the MAPS scheme are giver
Eq. (23), Table Ill, where corresponding terms are located at the same positions as in Tal
Comparison of Table | with Table Il reveals that construction of the MAPS scheme bear

TABLE Il
Eq. (22): Crossflow Diffusion of Roe Scheme

1
AF&os— S(1—IMohAp
1
ARSP= Su@—IMohAp +n.pc(1 — [Mo) Adp,
1
AR 5= Ev(l— [Mo])Ap +nypc(1— [Mo|)Ad,

1
ARG SH@=MohAp
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TABLE 11l
Eq. (23): MAPS Dissipation

111

AF/J: +P:3MAQn

AF,, =nBPAp +pup™ Ag,
AF,, =n,BPAp +pvpMAd,
AFp = +pHB Aq,

+lohAp

+l0nlApu
+lohlApv
+ltn|ApH

significantresemblance to the classical Roe scheme. However, allterms sodled o |)
are omitted, and the scaling for the upwinding of pressure and normal velocity is not
formed linearly, but using the functiof® andgM given in Egs. (13) and (10), respectively.
Thus, apart from the terms scaled tiy— | My|), the main difference between the Roe anc
the MAPS scheme stems from the activation of the upwinding by the fungtibasdsM.

As mentioned earlier, when preconditioning is applied to the solution of low-Macl
number flow, the eigenvalues of the preconditioned Jacobian must be used. The matr
the eigenvalueA®" of the preconditioned JacobiaP - A,| for the normal direction are

given by [9, 10]

A" = diag(gn, On, g, + €, g, — C'},

where
qr/1 =0 (1—-0),
¢ =4/a?q2 + M2c2,
1
a=§@—Mﬁ
andM; is given by Eqg. (18).
320x64 RAE 2822
Re=6,500,000
_ M, ,=0.001
i o =1.89°

(24)

(25)

dq{m)=0, k=1.5

ga?ic 0
. m)=
10°F (80
k=1
10-6|‘.|y..l. P ST ISR T |
0 100 200 300 400 500 600
cycles
FIG. 2. Flux-difference splitting scheme and preconditioning.
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TABLE IV
Eq. (28): Dissipative Terms of MAPS+ Scheme

AF,= HEIRN: B Ad, e

AFu=NgPAD  FTUQ-IMDAD  4npCL- IMGDAG  FpUBMAG  HlApy
AR =MD oA IMDAD  Anpc(- MDAG  ouMAd  HalAp
AF, = SHA- Mobap LoHBYAG  HIglApH

Approximately, the artificial dissipative terms for the preconditioned Roe scheme
obtained by substituting the preconditioned speed of saliindm Eq. (25) for the physical
speed of sound in Eq. (21) in Table | and by evaluating, as

q/
Mo = —. 26
0= (26)
The resulting expressions for the artificial dissipation then resemble closely those in
Following Eq. (16) the preconditioning is now applied as

AW oF 0G

— +P|—+——-AD(’,c)| =0 27

at TPlax Ty ', ¢) : (27)
where AD (q', ¢/) denotes the artificial dissipation terms of the Roe scheme given |
Eq. (21), evaluated using the preconditioned variables defined by Eq. (25).

TABLE V
Eq. (29): Evaluation of Interface Variables for MAPS+ Scheme
1 M
AF,= Cmax(1*|Mo|)Ap +pB" Alh +1Gn|Ap
1 —
AFu= nBPAp +Cm_axu(1_|MO|)Ap +nep™e™™(L— Mo)AGy  +ouMAG,  +ldwlApu
1 -
AFy= nyBPAp +m—axv(l—|Mo|)Ap +nyp™ ™ (L~ [MoDAGy  +puBMAG  +GApv
1
AFu= ——=H™ (1~ Mo Ap +oHBYAG, Il ApH

Cmax

IMo| = min(max(|M*[, [M®[), 1)
C"™*= max(c", c¥)

c™" = min(ct, c¥)

™" = min(p", p7)

H™" = min(H, HR)
u=05- (Ut +u®d)

v=0.5. (v +R)
p=05-(p" 4 pF)
pu=05-(p-ut + pRuR)
pv=05- (p"v" + pFvf)
pH=05- (p- H' + pRHR)
o] — Eq (7)

" — Eq (10

B°— Eq. (13
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FIG. 3. MAPS and MAPS+ for 1D nozzle flows.

Using the preconditioned Roe scheme, relevant terms in Eq. (21) will now be identif
for low Mach number flow. Figure 2 shows the convergence rates for the computatior
viscous flow around the RAE2822 kt,, = 0.001, « = 1.89°, Re=6,500,000. Two sets
of curves can be distinguished in the figure: several almost identical curves showing a
convergence, and one curve showing a slower convergence. The fast convergence rate:
obtained with the basic, preconditioned Roe scheme of Egs. (21) and (25), and then
cessively removing the upwind pressure terms of the momentum equétip¢re) = 0),
and all normal velocity upwinding ternmslq(s) = 0) except the termgc(l — |Mg|)Ag,

in the momentum equations. None of these terms had any significant influence on «
vergence. Note that the pressure differences scaleél(lbyL [Mg|) and the dissipative
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107 F cd 0.01788  0.01791 40.50
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FIG. 4. Comparision for 2D viscous transonic flow.

terms|gn| A¢ were always retained. However, removing the terms containing the norm
velocity upwindingoc(1 — |Mg|) Aq, in the momentum equations deteriorated the convel
gence of the scheme consideralidyg(m) = 0). To establish convergence, the constant

in Eq. (18) had to be increased to 1.5. Thus, numerical experimenting showed that for

0.31

ARSH—
cp=0:
Blunted Wedge
" Mo=10, o =0°

Re =10,000

128 x 64

FIG. 5. Results for 2D viscous hypersonic flow with MAPS+ scheme.
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320x64
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Hd’p” o =279°
dt
10"k
107 b
107k
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10°
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15 o =279
-c |
Pl
1ok M=0.73
051 M=0.1-0.001
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FIG. 6. Mach number variation with preconditioned MAPS+, convergence rates, and pressure distributior

preconditioned scheme, the important terms are exactly those that provide crossflow d
sion, as summarized in Table Il, Eq. (22).

Based on these results, for an augmented MAPS discretization the crossflow diffus
terms of Table Il are included in the basic scheme of Table Ill. The terms of the MAP
scheme with crossflow diffusion are listed in Table IV, Eq. (28). To adapt the dissipati
terms of MAPS+ given in Table IV for preconditioning, the physical speed of sound
Eq. (28), Table 1V, is replaced by the preconditioned speed of souRdeconditioning is
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320x64 RAE 2822
Re=6,500,000
10° = M_=0.001
Hde i o =1.89°- 16°
dt !
107 E
10%F
10
10 F
10°F
al=1.89 al=8 al=12 al=16,
= k=1.5
10‘6|‘ 1 i 1 M IS | M |
0 100 200 300 400 500 600
cycles

FIG. 7. Variation of angle of attack, convergence rates.

then applied according to Eq. (27) by multiplying the numerical fluxes with the preconc
tioning matrixP. Note that for incorporation in the numerical scheme, the expressions
Table IV must be premultiplied by 0.5 and then subtracted from the centrally discretiz
flux of the cell interface, as given in Eq. (19) for the FDS scheme. It should be mention
that the significance of pressure difference terms in preconditioned numerical dissipa
was already recognized in [14].

Incorporation of the crossflow diffusion terms to yield the MAPS+ discretization leads
the question of how to evaluate the interface variables needed for the scaling of the pres
and velocity differences. For the FDS scheme, this is done using Roe-averaging. The b
MAPS scheme already possesses very good shock capturing capabilities. Therefore
influence of the crossflow diffusion terms given in Eq. (22) should be minimized at shocl
This may be established using the procedure given in Table V, Eq. (29). Thus, no R
averaging is required for MAPS+.

4.2. Validation of MAPS+ for Compressible Flow

Before the computation of incompressible flow with MAPS+ could be started, a che
of the performance for the compressible test cases used to validate the basic MAPS scl
in [7] had to be made.

Computation of 1D flow in a Laval nozzle yielded basically the same results as for t
basic MAPS scheme, as shown in the upper part of Fig. 3: similarly to MAPS, MAPS
does not need any entropy condition at sonic points. Also, for strong normal shocks
deterioration compared to MAPS was observed, as can be seen from the computation ¢
nozzle flow with a pre-shock Mach number of 34; see the lower part of Fig. 3. Computati
of inviscid 2D flows around airfoils (not shown here) also exhibited no significant diffe
ences from the results of the basic MAPS formulation in [7]. A comparison of MAPS ar
MAPS+ for the viscous flow around the RAE2822 airfoil for the Case 9 conditions of [15
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FIG. 8. \Variation of angle of attack, pressure distributions.

Mo = 0.73, ¢ = 279, Re= 6,500,000, is given in Fig. 4. The convergence on the fin
mesh has improved using the MAPS+ discretization by about 25% of the fine mesh |
cycles. The computed values for lift and drag are also given in Fig. 4, and as can be s
the difference is negligible.

The last compressible test case is the hypersonic flow around a blunt body (Fig. 5). N
that for these computations the node-centered code of [6] was used, where the HC
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FIG. 9. Mach number distribution for high-lift airfoil flow.

discretization was exchanged for MAPS+. An analogous procedure was used in [7].
results obtained with MAPS+ are similar to those in [7]. Thus, it is concluded that accure
and robustness are not impaired by using MAPS+ instead of MAPS for compressible flo

4.3. Results for Preconditioned MAPS+ Scheme

First, the viscous flow around the RAE2822 airfoil is considered. The starting fre
stream conditions correspond to Case 9, M, = 0.73, « = 2.79, Re= 6,500,000, and
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FIG. 10. Convergence rates for high-lift airfoil flow.

transition on upper and lower surface at 3% chord. Keeping all other parameters constan
Mach numberislowered i, =0.5, 0.1, 0.01, 0.001, respectively. The change inthe pres-
sure distributions due to compressibility effects are clearly seen in Fig. 6; however,
convergence rates are not effected by the variation of Mach number.

In the next step of the investigation, the robustness of the code for computing incc
pressible flow around airfoils is assessed by a variation of angle of attétk at 0.001
The Reynolds number is Re6,500,000, and the flow is assumed to be fully turbulent t
avoid premature separation. As can be seen in Fig. & forl.89°-8.0°, the convergence
rates are only slightly affected. Fer= 12°, convergence problems on the coarse mesh o«
cur; however, a reasonable fine mesh convergence was achieved- A6°, a converged
solution could be obtained only by increasing the condtantEq. (18) to 1.5. Note that
after a number of iterations at a high residual level, the convergence rate is close to the c
cases. Figure 8 displays computed pressure distributions. At the highest angle of atta
suction peak of cp= —20.5 is reached. Inspecting the pressure distributions at the trailir
edge, itis noted that for the higher angles of attack; 12°—16°, separation at the trailing
edge starts, indicated by the smaller amount of pressure recovery. It is assumed that
cases close to separation need more time to settle; once this is established, the asym
convergence is similar to the cases without separation. Note that all cases were started
freestream conditions; in none of the cases was the solution of the lower angle of att
used as a starting solution.

The last test case was selected to investigate the convergence properties of the prec
tioned MAPS+ scheme at conditions resembling those encountered in flows around higt
devices. Departing from the previous case wite- 16°, M, = 0.001, the Mach number
isincreased ttM,, = 0.1 andM,, = 0.2. Due to the strong acceleration around the leadin
edge of the airfoil, regions of compressible flow will be embedded in the nearly incol
pressible oncoming flow. Favl,, = 0.2, the highestlocal Mach number in the leading edge
region was observed to bd = 1.3, and Fig. 9 gives a view of the corresponding Mact
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FIG. 11. Pressure and skin friction distributions for high-lift airfoil flow.

number distribution in the flow field. Figure 10 displays the corresponding converger
rates. The number of iterations at a high residual level increases with increasing Mach n
ber. The asymptotic convergence rates are, however, almost identical. All computati
were started from freestream conditions &nd 1.5. The reason for the increasing number
of iterations may again be found by inspection of pressure distributions and corresponc
skin friction distributions (Fig. 11): Increasing the Mach number increases the separat
region at the trailing edge, and it is assumed that the larger the separation region, the lo
the solution needs to settle to a steady condition. Once this is established, the asymp
convergence is found to be independent of the Mach number.
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5. CONCLUSION

A hybrid flux-splitting scheme was derived for solution of compressible and incompre
sible Euler and Navier—Stokes equations. As a basis for the derivation, a recently develc
hybrid flux-splitting scheme for compressible flow was used.

Applying preconditioning technigues to solve for incompressible flows with the bas
scheme, it was realized that the scheme, as other common hybrid flux-splitting scher
does not provide any acoustic damping in the crossflow direction. To identify terms i
portant at low Mach number flows, the well-known flux difference splitting of Roe wa
expanded in functions of the cell interface Mach number. In the resulting expressions,
physical relevance of the different terms occurring became obvious, and terms contril
ing to crossflow diffusion could clearly be identified. These findings were confirmed |
numerical experiment.

The crossflow diffusion terms were then incorporated into the basic flux-splitting scher
The resulting discretization now shows a close resemblance to the Roe flux-differe
splitting; however, the weighting of several terms with the Mach number is different. T
augmented flux-splitting scheme shows no degradations for compressible flows comp
to the basic scheme. Using the augmented scheme in combination with preconditioning
airfoil flows similar convergence rates could be established forincompressible and trans
flows. The robustness of the present formulation in combination with preconditioning w
demonstrated by computing an airfoil under high-lift conditions with mixed incompressik
and compressible flow.
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