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In the present work, a recently proposed flux-splitting scheme suitable for com-
pressible flow is extended to incompressible flows. Appropriate dissipation terms for
both incompressible and compressible flows are determined by expanding the Roe
flux-difference splitting in terms of Mach number. Analysis of the dissipation terms
in this form for both the Roe scheme and the basic (current) scheme leads to the
incorporation of certain terms into the basic scheme to establish the transition from
compressible flow toward the incompressible limit. Using the proper terms in the dis-
sipation formulation, convergence rates for airfoil flows became nearly independent
of the freestream Mach number.c© 2000 Academic Press

Key Words:flux-splitting scheme; compressible and incompressible flows; relevant
terms for all speeds; Navier–Stokes.

1. INTRODUCTION

The requirements for discretization methods suitable for the simulation of technically
relevant flows cover a very broad spectrum, and are sometimes even contradicting: To
obtain accurate solutions, only a minimum amount of numerical viscosity can be tolerated,
especially for the resolution of boundary layers in viscous flows. For flows with strong
shock waves, however, robustness becomes of primary importance, especially near vacuum
conditions where the prediction of negative values for positive quantities like pressure and
density is likely to occur. In such situations, the proper amount of numerical viscosity needs
to be supplied to achieve a converged solution. To establish adequate discretization schemes,
recent development has focused on construction of hybrid flux-splitting formulations, where
the accuracy of flux-difference splitting [1] is combined with the robustness of flux-vector
splitting [2]. Prominent representatives of such schemes are the advection upstream split
Mach number (AUSM) scheme [3], the low-diffusion flux-splitting scheme (LDFSS) [4],
and the convection upstream split pressure (CUSP) formulations [5, 6]. In a previous study

104

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



A FLUX-SPLITTING SCHEME 105

[7], an alternative formulation based on the left and right Mach numbers was proposed.
Here, the computation of an intermediate state at a cell interface is almost completely
avoided. The derivation in [7] leads to a very simple discretization scheme, which despite
its simplicity rivals the common, most advanced high-resolution/high-accuracy schemes
such as [3–5].

In addition to the derivation of numerical methods for computation of compressible
flows, over the past several years considerable effort has been spent on the extension of
schemes designed for compressible flow to solve for incompressible flow. The problems
of compressible codes handling incompressible flows are caused by the disparity of the
eigenvalues of the compressible equations: at low speeds, the largest eigenvalue tends
toward the speed of sound, whereas the smallest eigenvalue approaches zero. Thus, the
ratio of largest to smallest eigenvalue, the condition number of the system of equations,
tends to infinity and the stiffness of the system of equations increases. To overcome the
stiffness problem, the eigenvalues are altered toward a more favorable condition number,
and the system of equations is “preconditioned” for easier solution with iterative methods,
e.g., [8–10].

In the present work, the requirements of both compressible and incompressible flows for
the formulation of the discrete interface flux function are considered. The intention of this
work is to establish a discretization method suitable for the range from incompressible to
hypersonic flows without overly compromising accuracy or robustness. As a basis, the flux-
splitting scheme derived in [7] will be used. The scheme employs elements of the LDFSS
[4] and of the CUSP [5] formulations and uses the left and right Mach number at an interface
to establish the flux function. The basic scheme is extended to incompressible flows. To
identify terms important in the incompressible limit, the Roe flux-difference splitting [1] is
expanded in functions of the Mach number. Analysis of the resulting expressions leads to
the incorporation of certain terms establishing an appropriate discretization scheme at low
speeds. The implications for the convergence characteristics of the extended scheme are
then assessed for viscous airfoil flows at incompressible and at transonic conditions.

2. GOVERNING EQUATIONS

We consider the two-dimensional Navier–Stokes equations for compressible flow. The
system of partial differential equations in strong conservation form is given by

∂W
∂t
+ ∂F
∂x
+ ∂G
∂y
= 0, (1)

whereW represents the vector of conservative variables. The flux-density vectors for thex
andy directions,F andG, may be split in convective and viscous parts according to

F = Fc− Fv; G = Gc−Gv. (2)

Setting the viscous parts of the flux-density tensor,Fv andGv, to zero, the Euler equations
governing inviscid flow are obtained.

In the construction of hybrid flux-splitting upwind schemes, it was recognized that the
convective parts of the flux-density vectors may be further subdivided into contributions
related to advection and pressure [3, 5]:

Fc = Fad+ Fp; Gc = Gad+Gp, (3)
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where the contributions due to pressure are defined as

Fp =


0
p

0
0

 ; Gp =


0
0
p

0

 , (4)

and the contributions related to advection are given by

Fad= uφ; Gad= vφ, (5)

with the vector of advected quantities defined by

φ =


ρ

ρu
ρv

ρH

 . (6)

3. HYBRID FLUX-SPLITTING SCHEME FOR COMPRESSIBLE FLOW

In the following, a brief presentation of the hybrid flux-splitting scheme MAPS developed
in [7] and an overview of the basic solution method will be given. For the design principles of
the MAPS (Mach number-based advection pressure splitting) scheme the reader is referred
to [7].

3.1. Basic Discretization Scheme

The flux-splitting scheme developed in [7] splits the convective flux-density tensor into
an advective contribution and into a contribution associated with pressure, Eq. (3). The
advective partFφ at a cell interface is discretized by

Fφ = 1

2

(
qL

n + qR
n

) · 1
2

(
φL

n + φR
n

)− 1

2
(φL + φR) · 1

2
βM · cav · [MR · sign(MR)

−ML · sign(ML)] − 1

2
· cav ·max(|ML |, |MR|) · (φR− φL), (7)

where L and R denote the states left and right of the cell interface,qn is the normal velocity
at the interface,M denotes the Mach number of the interface normal velocity, evaluated by

M = qn

cav
, (8)

andcav is the average speed of sound at the interface computed by

cav = 1

2
(cL + cR). (9)

The functionβM is given by

βM = max(0, 2 · Mmax 1− 1)
(10)

Mmax 1= minbmax(|M L |, |M R|), 1c.
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The contribution of pressure at a cell interface is determined via

Fp = 1

2
(pL + pR)− 1

2
· βp · [pR · sign(MR)− pL · sign(ML)], (11)

where

p =


0

p · nx

p · ny

0

 ; n =
[

nx

ny

]
, (12)

with n denoting the unit normal vector of the interface, and the blending functionβp defined
as

βp = max(0, 2 · Mmin 1− 1)
(13)

Mmin 1 = min[min(|ML |, |MR|), 1].

3.2. Basic Solution Algorithm

The basic solution scheme is a cell-centered, finite-volume scheme, where the time in-
tegration is performed using a 5-stage Runge–Kutta scheme. The MAPS scheme is imple-
mented in the pattern of a central discretization plus artificial dissipation, and the artificial
dissipative terms are evaluated at every odd stage of the time-marching scheme. For second-
order accuracy, the components of the advection vectorφ are reconstructed. To control the
reconstruction, the SLIP limiter of [5] is used following the implementation given in [6]. To
accelerate convergence toward the steady state, local time-stepping, implicit residual aver-
aging, and Multigrid are used. The influence of turbulence is modeled according to Baldwin
and Lomax [11]. The basic outline of the numerical framework may be found in [12].

If not otherwise indicated, in the following computations the numerical parameters are
fixed to

CFL= 7.5
4-level W cycle
First-order MAPS scheme on coarse meshes
Modification of SLIP-limiter according to Swansonet al. [6] by settingk(4) = 1/8.

4. FLUX-SPLITTING SCHEME FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOW

Preconditioning methods have been developed to solve incompressible flow problems
with numerical algorithms designed primarily for compressible flows. The difficulties en-
countered with low-speed flows arise from the increase in the condition number of the
system of equations, i.e., the increase in the stiffness of the governing equations. To over-
come the stiffness problem, the time derivatives of the dependent variables are multiplied
by a suitable matrix in order to change the eigenvalues such that the condition number is
more favorable. This may be expressed by

P−11W
1t
+ ∂F
∂x
+ ∂G
∂y
= AD, (14)

whereP−1 is the preconditioning matrix, and AD denotes the artificial dissipative terms
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necessary to stabilize the numerical scheme. Note that in Eq. (14) the spatial derivatives of the
flux-density tensor are assumed to be approximated by central difference approximations.
As outlined in [9, 10], for a Roe-type scheme the artificial dissipation should be based on
the eigenvalues of the preconditioned Jacobians:

1W
1t
+ P ·

[
∂F
∂x
+ ∂G
∂y

]
= P[(|P−1 · A|1W)x + (|P−1 · B|1W)y], (15)

whereA andB denote the Jacobians of thex andy directions, andP−1A andP−1B are the
corresponding preconditioned Jacobians. In the case of a CUSP scheme, for Mach numbers
below 0.5 the artificial dissipation scales linearly with the normal interface velocity. Thus,
in [6] the preconditioning was applied in the form

1W
1t
+ P

[
∂F
∂x
+ ∂G
∂y
− (P−1|qn|1W)n

]
= 0; (16)

i.e., the numerical dissipation need not be changed. Since the MAPS and the CUSP scheme
yield similar expressions for Mach numbers below 0.5, this strategy was at first adopted for
the computation of low-speed flows. In the present study, however, it was found advanta-
geous for MAPS to implement the numerical viscosity in the form

1W
1t
+ P

[
∂F
∂x
+ ∂G
∂y

]
= |qn|1W; (17)

i.e., only the centrally differenced fluxes are preconditioned and the artificial dissipation is
added after the preconditioning step. Note that this implementation leads to a nonconser-
vative formulation of the artificial dissipation.

In the present investigation, the preconditioning matrix given by Choi and Merkle [8] is
used to remove the stiffness in the system of equations. In all preconditioners developed so
far, a reference Mach numberMr must be computed in order to avoid numerical difficulties
at stagnation points. In the present study the reference Mach numberMr is evaluated from

M2
r = min

[
max

(
q2

c2
, k

q2
∞

c2∞

)
, 1

]
, (18)

whereq andc denote velocity and speed of sound, respectively. The constantk in (18) is
set tok = 1, unless otherwise noted.

Figure 1 shows the convergence rates obtained for the computation of the viscous flow
around the RAE2822 airfoil for a freestream Mach number ofM∞ = 0.001 andM∞ =
0.73. A mesh with C-topology using 320× 64 cells was employed. In both cases the
preconditioning matrix of [8] was used with the implementation given by Eq. (17). The cor-
responding slopes are indicated in the figure by pr= 2. As can be seen in Fig. 1, the
computation of the incompressible flow poses no severe problem, but the convergence rate
of the preconditioned code now deteriorates for compressible flow. This becomes clear by
comparison with the unpreconditioned result, the convergence history denoted by pr= 0 in
the figure.

Regarding the results in Fig. 1, it becomes obvious that certain elements in the basic
MAPS scheme are missing if one attempts to establish a convergence behavior indepen-
dent of compressible or incompressible conditions. When inspecting hybrid flux-splitting
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FIG. 1. Basic MAPS scheme and preconditioning.

schemes like AUSM, LDFSS, CUSP, or MAPS, one notices that these schemes do not pro-
vide any crossflow diffusion for grid-aligned flows, since for the aligned cell face the normal
component of velocity approaches zero. In principle, the schemes are designed that way to
accurately resolve shear layers. However, in the Roe flux-difference splitting (FDS), cross-
flow diffusion is provided by acoustic and shear waves even for an interface normal velocity
of zero. Therefore, in the following the Roe FDS scheme will be expanded in terms of Mach
number to identify relevant terms when the interface normal velocity approaches zero.

4.1. Expansion of Roe FDS in Terms of Mach Number and Augmented MAPS Formulation

The basic Roe flux-differencing scheme is given by

FRoe= 1

2
(FL + FR)− 1

2
|A|1W, (19)

whereFL andFR are the left and right states of the inviscid, convective part of the flux-
density vector,A is the corresponding flux Jacobian, and1W denotes the differences in
conservative variables between the left and the right state of the interface. For the expansion,
the interface Mach numberM0 is defined as

M0 = min(|M |, 1) · sign(M); (20)

i.e., M0 denotes the unaltered interface Mach number, however bounded by±1. Using this
definition, the expression|A|1W in Eq. (19), which represents the dissipative terms of the
FDS scheme, is expanded in terms factored byM0 and (1− |M0|). To derive the Mach
number expansion, the basic derivation of Roe and Pike [13] was used as a guideline. The
resulting expressions are summarized in Eq. (21), Table I. Here1Fρ,1Fρu,1Fρv,1FρH

denote the expressions of|A|1W for the continuity, the momentum, and the energy equation,
respectively. All intermediate variables on a cell interface must be evaluated using Roe-
averaging [1], as it is standard practice for the matrix|A| in the classical FDS scheme. Note
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TABLE I

Eq. (21): Flux-Difference Dissipation Expanded in Mach Number

1Fρ= 1

c
(1− |M0|)1p +ρ|M0|1qn +|qn|1ρ

1Fρu = nx|M0|1p +1

c
u(1− |M0|)1p +nxρc(1− |M0|)1qn +ρu|M0|1qn +|qn|1ρu

1Fρv = ny|M0|1p +1

c
v(1− |M0|)1p +nyρc(1− |M0|)1qn +ρv|M0|1qn +|qn|1ρv

1FρH= 1

c
H(1− |M0|)1p +qnρc(1− |M0|)1qn +ρH |M0|1qn +|qn|1ρH

− |qn|(1− |M0|)1p

that the terms given in Eq. (21) must be multiplied by 0.5 to obtain the correct scaling for the
dissipative terms of the FDS scheme; see Eq. (19). Proceeding from left to right in Eq. (21),
the following terms should be noted:

—In the momentum equations, the upwinding of pressure is achieved by linearly scaling
the pressure differences1p by |M0|.

—In all equations pressure differences are added, scaled by1
c(1− |M0|). Note that these

terms are switched off at supersonic flow.
—In the energy equation, an additional term with pressure differences occurs. This term

arises from the fact that differences1ρH are used for the dissipative flux instead of1ρE.
Note that this term vanishes at|M | = 1 andM = 0.

—With the exception of the continuity equation, in all other equations differences in the
normal velocity1qn scaled byρc(1− |M0|) appear. These terms vanish for supersonic
flow, and in the energy equation the term also vanishes forM→ 0.

—In all equations differences in normal velocity1qn occur, scaled linearly by|M0|.
These terms provide the upwinding of the normal interface velocity.

—In all equations, differences in the advected quantities1φ are scaled linearly by the
normal velocity at an interface.

To identify terms in the Roe scheme that contribute to crossflow diffusion, let the inter-
face normal velocityqn and, correspondingly,M0 approach zero. The remaining terms are
summarized in Eq. (22), Table II.

It is instructive to compare the corresponding formulations of the MAPS scheme with
the expressions in Eq. (21), Table I. The formulations for the MAPS scheme are given in
Eq. (23), Table III, where corresponding terms are located at the same positions as in Table I.
Comparison of Table I with Table III reveals that construction of the MAPS scheme bears a

TABLE II

Eq. (22): Crossflow Diffusion of Roe Scheme

1Fcross
ρ = 1

c
(1− |M0|)1p

1Fcross
ρu =

1

c
u(1− |M0|)1p +nxρc(1− |M0|)1qn

1Fcross
ρv =

1

c
v(1− |M0|)1p +nyρc(1− |M0|)1qn

1Fcross
ρH =

1

c
H(1− |M0|)1p
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TABLE III

Eq. (23): MAPS Dissipation

1Fρ= +ρβM1qn +|qn|1ρ
1Fρu = nxβ

p1p +ρuβM1qn +|qn|1ρu
1Fρv = nyβ

p1p +ρvβM1qn +|qn|1ρv
1FρH = +ρHβM1qn +|qn|1ρH

significant resemblance to the classical Roe scheme. However, all terms scaled by(1− |M0|)
are omitted, and the scaling for the upwinding of pressure and normal velocity is not per-
formed linearly, but using the functionsβp andβM given in Eqs. (13) and (10), respectively.
Thus, apart from the terms scaled by(1− |M0|), the main difference between the Roe and
the MAPS scheme stems from the activation of the upwinding by the functionsβp andβM.

As mentioned earlier, when preconditioning is applied to the solution of low-Mach-
number flow, the eigenvalues of the preconditioned Jacobian must be used. The matrix of
the eigenvaluesΛPr of the preconditioned Jacobian|P−1 · An| for the normal direction are
given by [9, 10]

ΛPr = diag{qn,qn,q
′
n+ c′,q′n− c′}, (24)

where

q′n = qn · (1− α),
c′ =

√
α2q2

n + M2
r c2, (25)

α = 1

2

(
1− M2

r

)
,

andMr is given by Eq. (18).

FIG. 2. Flux-difference splitting scheme and preconditioning.
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TABLE IV

Eq. (28): Dissipative Terms of MAPS+ Scheme

1Fρ= 1

c
(1− |M0|)1p +ρβM1qn +|qn|1ρ

1Fρu = nxβ
p1p +1

c
u(1− |M0|)1p +nxρc(1− |M0|)1qn +ρuβM1qn +|qn|1ρu

1Fρy = nyβ
p1p +1

c
v(1− |M0|)1p +nyρc(1− |M0|)1qn +ρvβM1qn +|qn|1ρv

1FρH= 1

c
H(1− |M0|)1p +ρHβM1qn +|qn|1ρH

Approximately, the artificial dissipative terms for the preconditioned Roe scheme are
obtained by substituting the preconditioned speed of soundc′ from Eq. (25) for the physical
speed of soundc in Eq. (21) in Table I and by evaluatingM0 as

M0 = q′

c′
. (26)

The resulting expressions for the artificial dissipation then resemble closely those in [9].
Following Eq. (16) the preconditioning is now applied as

1W
1t
+ P

[
∂F
∂x
+ ∂G
∂y
− AD(q′, c′)

]
= 0, (27)

where AD (q′, c′) denotes the artificial dissipation terms of the Roe scheme given by
Eq. (21), evaluated using the preconditioned variables defined by Eq. (25).

TABLE V

Eq. (29): Evaluation of Interface Variables for MAPS+ Scheme

1Fρ= 1

cmax
(1− |M0|)1p +ρβM1qn +|qn|1ρ

1Fρu= nxβ
p1p + 1

cmax
u(1− |M0|)1p +nxρ

mincmin(1− |M0|)1qn +ρuβM1qn +|qn|1ρu

1Fρy= nyβ
p1p + 1

cmax
v(1− |M0|)1p +nyρ

mincmin(1− |M0|)1qn +ρvβM1qn +|qn|1ρv

1FρH= 1

cmax
Hmin(1− |M0|)1p +ρHβM1qn +|qn|1ρH

|M0| = min(max(|ML |, |MR|), 1)
cmax= max(cL, cR)

cmin= min(cL, cR)

ρmin= min(ρL, ρR)

Hmin= min(H L, HR)

u= 0.5 · (uL + uR)

v= 0.5 · (vL + vR)

ρ= 0.5 · (ρL + ρR)

ρu= 0.5 · (ρLuL + ρRuR)

ρv= 0.5 · (ρLvL + ρRvR)

ρH = 0.5 · (ρL H L + ρRHR)

|qn|→ Eq. (7)
βM→ Eq. (10)
βp→ Eq. (13)
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FIG. 3. MAPS and MAPS+ for 1D nozzle flows.

Using the preconditioned Roe scheme, relevant terms in Eq. (21) will now be identified
for low Mach number flow. Figure 2 shows the convergence rates for the computation of
viscous flow around the RAE2822 atM∞ = 0.001, α = 1.89◦, Re= 6,500,000. Two sets
of curves can be distinguished in the figure: several almost identical curves showing a fast
convergence, and one curve showing a slower convergence. The fast convergence rates were
obtained with the basic, preconditioned Roe scheme of Eqs. (21) and (25), and then suc-
cessively removing the upwind pressure terms of the momentum equations(dp(m) = 0),
and all normal velocity upwinding terms(dq(s) = 0) except the termsρc(1− |M0|)1qn

in the momentum equations. None of these terms had any significant influence on con-
vergence. Note that the pressure differences scaled by1

c(1− |M0|) and the dissipative
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FIG. 4. Comparision for 2D viscous transonic flow.

terms|qn|1φ were always retained. However, removing the terms containing the normal
velocity upwindingρc(1− |M0|)1qn in the momentum equations deteriorated the conver-
gence of the scheme considerably(dq(m) = 0). To establish convergence, the constantk
in Eq. (18) had to be increased to 1.5. Thus, numerical experimenting showed that for the

FIG. 5. Results for 2D viscous hypersonic flow with MAPS+ scheme.
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FIG. 6. Mach number variation with preconditioned MAPS+, convergence rates, and pressure distributions.

preconditioned scheme, the important terms are exactly those that provide crossflow diffu-
sion, as summarized in Table II, Eq. (22).

Based on these results, for an augmented MAPS discretization the crossflow diffusion
terms of Table II are included in the basic scheme of Table III. The terms of the MAPS+
scheme with crossflow diffusion are listed in Table IV, Eq. (28). To adapt the dissipative
terms of MAPS+ given in Table IV for preconditioning, the physical speed of sound in
Eq. (28), Table IV, is replaced by the preconditioned speed of soundc’. Preconditioning is
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FIG. 7. Variation of angle of attack, convergence rates.

then applied according to Eq. (27) by multiplying the numerical fluxes with the precondi-
tioning matrixP. Note that for incorporation in the numerical scheme, the expressions of
Table IV must be premultiplied by 0.5 and then subtracted from the centrally discretized
flux of the cell interface, as given in Eq. (19) for the FDS scheme. It should be mentioned
that the significance of pressure difference terms in preconditioned numerical dissipation
was already recognized in [14].

Incorporation of the crossflow diffusion terms to yield the MAPS+ discretization leads to
the question of how to evaluate the interface variables needed for the scaling of the pressure
and velocity differences. For the FDS scheme, this is done using Roe-averaging. The basic
MAPS scheme already possesses very good shock capturing capabilities. Therefore, the
influence of the crossflow diffusion terms given in Eq. (22) should be minimized at shocks.
This may be established using the procedure given in Table V, Eq. (29). Thus, no Roe-
averaging is required for MAPS+.

4.2. Validation of MAPS+ for Compressible Flow

Before the computation of incompressible flow with MAPS+ could be started, a check
of the performance for the compressible test cases used to validate the basic MAPS scheme
in [7] had to be made.

Computation of 1D flow in a Laval nozzle yielded basically the same results as for the
basic MAPS scheme, as shown in the upper part of Fig. 3: similarly to MAPS, MAPS+
does not need any entropy condition at sonic points. Also, for strong normal shocks no
deterioration compared to MAPS was observed, as can be seen from the computation of 1D
nozzle flow with a pre-shock Mach number of 34; see the lower part of Fig. 3. Computation
of inviscid 2D flows around airfoils (not shown here) also exhibited no significant differ-
ences from the results of the basic MAPS formulation in [7]. A comparison of MAPS and
MAPS+ for the viscous flow around the RAE2822 airfoil for the Case 9 conditions of [15],
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FIG. 8. Variation of angle of attack, pressure distributions.

M∞ = 0.73, α = 2.79◦, Re= 6,500,000, is given in Fig. 4. The convergence on the fine
mesh has improved using the MAPS+ discretization by about 25% of the fine mesh MG
cycles. The computed values for lift and drag are also given in Fig. 4, and as can be seen,
the difference is negligible.

The last compressible test case is the hypersonic flow around a blunt body (Fig. 5). Note
that for these computations the node-centered code of [6] was used, where the HCUSP
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FIG. 9. Mach number distribution for high-lift airfoil flow.

discretization was exchanged for MAPS+. An analogous procedure was used in [7]. The
results obtained with MAPS+ are similar to those in [7]. Thus, it is concluded that accuracy
and robustness are not impaired by using MAPS+ instead of MAPS for compressible flows.

4.3. Results for Preconditioned MAPS+ Scheme

First, the viscous flow around the RAE2822 airfoil is considered. The starting free-
stream conditions correspond to Case 9, i.e.,M∞ = 0.73, α = 2.79◦, Re= 6,500,000, and
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FIG. 10. Convergence rates for high-lift airfoil flow.

transition on upper and lower surface at 3% chord. Keeping all other parameters constant, the
Mach number is lowered toM∞=0.5, 0.1, 0.01, 0.001, respectively. The change in the pres-
sure distributions due to compressibility effects are clearly seen in Fig. 6; however, the
convergence rates are not effected by the variation of Mach number.

In the next step of the investigation, the robustness of the code for computing incom-
pressible flow around airfoils is assessed by a variation of angle of attack atM∞ = 0.001.
The Reynolds number is Re= 6,500,000, and the flow is assumed to be fully turbulent to
avoid premature separation. As can be seen in Fig. 7, forα = 1.89◦–8.0◦, the convergence
rates are only slightly affected. Forα = 12◦, convergence problems on the coarse mesh oc-
cur; however, a reasonable fine mesh convergence was achieved. Atα = 16◦, a converged
solution could be obtained only by increasing the constantk in Eq. (18) to 1.5. Note that
after a number of iterations at a high residual level, the convergence rate is close to the other
cases. Figure 8 displays computed pressure distributions. At the highest angle of attack, a
suction peak of cp=−20.5 is reached. Inspecting the pressure distributions at the trailing
edge, it is noted that for the higher angles of attack,α = 12◦–16◦, separation at the trailing
edge starts, indicated by the smaller amount of pressure recovery. It is assumed that these
cases close to separation need more time to settle; once this is established, the asymptotic
convergence is similar to the cases without separation. Note that all cases were started from
freestream conditions; in none of the cases was the solution of the lower angle of attack
used as a starting solution.

The last test case was selected to investigate the convergence properties of the precondi-
tioned MAPS+ scheme at conditions resembling those encountered in flows around high-lift
devices. Departing from the previous case withα = 16◦,M∞ = 0.001, the Mach number
is increased toM∞ = 0.1 andM∞ = 0.2. Due to the strong acceleration around the leading
edge of the airfoil, regions of compressible flow will be embedded in the nearly incom-
pressible oncoming flow. ForM∞ = 0.2, the highest local Mach number in the leading edge
region was observed to beM = 1.3, and Fig. 9 gives a view of the corresponding Mach
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FIG. 11. Pressure and skin friction distributions for high-lift airfoil flow.

number distribution in the flow field. Figure 10 displays the corresponding convergence
rates. The number of iterations at a high residual level increases with increasing Mach num-
ber. The asymptotic convergence rates are, however, almost identical. All computations
were started from freestream conditions andk = 1.5. The reason for the increasing number
of iterations may again be found by inspection of pressure distributions and corresponding
skin friction distributions (Fig. 11): Increasing the Mach number increases the separation
region at the trailing edge, and it is assumed that the larger the separation region, the longer
the solution needs to settle to a steady condition. Once this is established, the asymptotic
convergence is found to be independent of the Mach number.
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5. CONCLUSION

A hybrid flux-splitting scheme was derived for solution of compressible and incompres-
sible Euler and Navier–Stokes equations. As a basis for the derivation, a recently developed
hybrid flux-splitting scheme for compressible flow was used.

Applying preconditioning techniques to solve for incompressible flows with the basic
scheme, it was realized that the scheme, as other common hybrid flux-splitting schemes,
does not provide any acoustic damping in the crossflow direction. To identify terms im-
portant at low Mach number flows, the well-known flux difference splitting of Roe was
expanded in functions of the cell interface Mach number. In the resulting expressions, the
physical relevance of the different terms occurring became obvious, and terms contribut-
ing to crossflow diffusion could clearly be identified. These findings were confirmed by
numerical experiment.

The crossflow diffusion terms were then incorporated into the basic flux-splitting scheme.
The resulting discretization now shows a close resemblance to the Roe flux-difference
splitting; however, the weighting of several terms with the Mach number is different. The
augmented flux-splitting scheme shows no degradations for compressible flows compared
to the basic scheme. Using the augmented scheme in combination with preconditioning, for
airfoil flows similar convergence rates could be established for incompressible and transonic
flows. The robustness of the present formulation in combination with preconditioning was
demonstrated by computing an airfoil under high-lift conditions with mixed incompressible
and compressible flow.
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